Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements.

Identifieur interne : 000300 ( Main/Exploration ); précédent : 000299; suivant : 000301

The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements.

Auteurs : Haoran Li ; Martin Stümpfig ; Caiguo Zhang [États-Unis] ; Xiuxiang An [États-Unis] ; Joanne Stubbe [États-Unis] ; Roland Lill [Allemagne] ; Mingxia Huang [États-Unis]

Source :

RBID : pubmed:28515324

Descripteurs français

English descriptors

Abstract

How each metalloprotein assembles the correct metal at the proper binding site presents challenges to the cell. The di-iron enzyme ribonucleotide reductase (RNR) uses a diferric-tyrosyl radical (FeIII2-Y) cofactor to initiate nucleotide reduction. Assembly of this cofactor requires O2, FeII, and a reducing equivalent. Recent studies show that RNR cofactor biosynthesis shares the same source of iron, in the form of [2Fe-2S]-GSH2 from the monothiol glutaredoxin Grx3/4, and the same electron source, in the form of the Dre2-Tah18 electron transfer chain, with the cytosolic iron-sulfur protein assembly (CIA) machinery required for maturation of [4Fe-4S] clusters in cytosolic and nuclear proteins. Here, we further investigated the interplay between the formation of the FeIII2-Y cofactor in RNR and the cellular iron-sulfur (Fe-S) protein biogenesis pathways by examining both the iron loading into the RNR β subunit and the RNR catalytic activity in yeast mutants depleted of individual components of the mitochondrial iron-sulfur cluster assembly (ISC) and the CIA machineries. We found that both iron loading and cofactor assembly in RNR are dependent on the ISC machinery. We also found that Dre2 is required for RNR cofactor formation but appears to be dispensable for iron loading. None of the CIA components downstream of Dre2 was required for RNR cofactor formation. Thus, the pathways for RNR and Fe-S cluster biogenesis bifurcate after the Dre2-Tah18 step. We conclude that RNR cofactor biogenesis requires the ISC machinery to mature the Grx3/4 and Dre2 Fe-S proteins, which then function in iron and electron delivery to RNR, respectively.

DOI: 10.1074/jbc.M117.786178
PubMed: 28515324
PubMed Central: PMC5500809


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements.</title>
<author>
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
<affiliation>
<nlm:affiliation>From the Departments of Chemistry and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Departments of Chemistry and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Stumpfig, Martin" sort="Stumpfig, Martin" uniqKey="Stumpfig M" first="Martin" last="Stümpfig">Martin Stümpfig</name>
<affiliation>
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Caiguo" sort="Zhang, Caiguo" uniqKey="Zhang C" first="Caiguo" last="Zhang">Caiguo Zhang</name>
<affiliation>
<nlm:affiliation>the Departments of Dermatology and.</nlm:affiliation>
<wicri:noCountry code="no comma">the Departments of Dermatology and.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="An, Xiuxiang" sort="An, Xiuxiang" uniqKey="An X" first="Xiuxiang" last="An">Xiuxiang An</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Stubbe, Joanne" sort="Stubbe, Joanne" uniqKey="Stubbe J" first="Joanne" last="Stubbe">Joanne Stubbe</name>
<affiliation>
<nlm:affiliation>From the Departments of Chemistry and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Departments of Chemistry and.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Biology, Massachusetts Institute of Technology, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany, and lill@staff.uni-marburg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany</wicri:regionArea>
<wicri:noRegion>Germany</wicri:noRegion>
<wicri:noRegion>Germany</wicri:noRegion>
<wicri:noRegion>Germany</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Mingxia" sort="Huang, Mingxia" uniqKey="Huang M" first="Mingxia" last="Huang">Mingxia Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Departments of Dermatology and mingxia.huang@ucdenver.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28515324</idno>
<idno type="pmid">28515324</idno>
<idno type="doi">10.1074/jbc.M117.786178</idno>
<idno type="pmc">PMC5500809</idno>
<idno type="wicri:Area/Main/Corpus">000342</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000342</idno>
<idno type="wicri:Area/Main/Curation">000342</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000342</idno>
<idno type="wicri:Area/Main/Exploration">000342</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements.</title>
<author>
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
<affiliation>
<nlm:affiliation>From the Departments of Chemistry and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Departments of Chemistry and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Stumpfig, Martin" sort="Stumpfig, Martin" uniqKey="Stumpfig M" first="Martin" last="Stümpfig">Martin Stümpfig</name>
<affiliation>
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Caiguo" sort="Zhang, Caiguo" uniqKey="Zhang C" first="Caiguo" last="Zhang">Caiguo Zhang</name>
<affiliation>
<nlm:affiliation>the Departments of Dermatology and.</nlm:affiliation>
<wicri:noCountry code="no comma">the Departments of Dermatology and.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="An, Xiuxiang" sort="An, Xiuxiang" uniqKey="An X" first="Xiuxiang" last="An">Xiuxiang An</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Stubbe, Joanne" sort="Stubbe, Joanne" uniqKey="Stubbe J" first="Joanne" last="Stubbe">Joanne Stubbe</name>
<affiliation>
<nlm:affiliation>From the Departments of Chemistry and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Departments of Chemistry and.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Biology, Massachusetts Institute of Technology, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany, and lill@staff.uni-marburg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany</wicri:regionArea>
<wicri:noRegion>Germany</wicri:noRegion>
<wicri:noRegion>Germany</wicri:noRegion>
<wicri:noRegion>Germany</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Mingxia" sort="Huang, Mingxia" uniqKey="Huang M" first="Mingxia" last="Huang">Mingxia Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Departments of Dermatology and mingxia.huang@ucdenver.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Free Radicals (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Ribonucleotide Reductases (genetics)</term>
<term>Ribonucleotide Reductases (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Radicaux libres (métabolisme)</term>
<term>Ribonucleotide reductases (génétique)</term>
<term>Ribonucleotide reductases (métabolisme)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Ribonucleotide Reductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Free Radicals</term>
<term>Glutaredoxins</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Ribonucleotide Reductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Ribonucleotide reductases</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Radicaux libres</term>
<term>Ribonucleotide reductases</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">How each metalloprotein assembles the correct metal at the proper binding site presents challenges to the cell. The di-iron enzyme ribonucleotide reductase (RNR) uses a diferric-tyrosyl radical (Fe
<sup>III</sup>
<sub>2</sub>
-Y
<sup></sup>
) cofactor to initiate nucleotide reduction. Assembly of this cofactor requires O
<sub>2</sub>
, Fe
<sup>II</sup>
, and a reducing equivalent. Recent studies show that RNR cofactor biosynthesis shares the same source of iron, in the form of [2Fe-2S]-GSH
<sub>2</sub>
from the monothiol glutaredoxin Grx3/4, and the same electron source, in the form of the Dre2-Tah18 electron transfer chain, with the cytosolic iron-sulfur protein assembly (CIA) machinery required for maturation of [4Fe-4S] clusters in cytosolic and nuclear proteins. Here, we further investigated the interplay between the formation of the Fe
<sup>III</sup>
<sub>2</sub>
-Y
<sup></sup>
cofactor in RNR and the cellular iron-sulfur (Fe-S) protein biogenesis pathways by examining both the iron loading into the RNR β subunit and the RNR catalytic activity in yeast mutants depleted of individual components of the mitochondrial iron-sulfur cluster assembly (ISC) and the CIA machineries. We found that both iron loading and cofactor assembly in RNR are dependent on the ISC machinery. We also found that Dre2 is required for RNR cofactor formation but appears to be dispensable for iron loading. None of the CIA components downstream of Dre2 was required for RNR cofactor formation. Thus, the pathways for RNR and Fe-S cluster biogenesis bifurcate after the Dre2-Tah18 step. We conclude that RNR cofactor biogenesis requires the ISC machinery to mature the Grx3/4 and Dre2 Fe-S proteins, which then function in iron and electron delivery to RNR, respectively.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28515324</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>292</Volume>
<Issue>27</Issue>
<PubDate>
<Year>2017</Year>
<Month>07</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements.</ArticleTitle>
<Pagination>
<MedlinePgn>11445-11451</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M117.786178</ELocationID>
<Abstract>
<AbstractText>How each metalloprotein assembles the correct metal at the proper binding site presents challenges to the cell. The di-iron enzyme ribonucleotide reductase (RNR) uses a diferric-tyrosyl radical (Fe
<sup>III</sup>
<sub>2</sub>
-Y
<sup></sup>
) cofactor to initiate nucleotide reduction. Assembly of this cofactor requires O
<sub>2</sub>
, Fe
<sup>II</sup>
, and a reducing equivalent. Recent studies show that RNR cofactor biosynthesis shares the same source of iron, in the form of [2Fe-2S]-GSH
<sub>2</sub>
from the monothiol glutaredoxin Grx3/4, and the same electron source, in the form of the Dre2-Tah18 electron transfer chain, with the cytosolic iron-sulfur protein assembly (CIA) machinery required for maturation of [4Fe-4S] clusters in cytosolic and nuclear proteins. Here, we further investigated the interplay between the formation of the Fe
<sup>III</sup>
<sub>2</sub>
-Y
<sup></sup>
cofactor in RNR and the cellular iron-sulfur (Fe-S) protein biogenesis pathways by examining both the iron loading into the RNR β subunit and the RNR catalytic activity in yeast mutants depleted of individual components of the mitochondrial iron-sulfur cluster assembly (ISC) and the CIA machineries. We found that both iron loading and cofactor assembly in RNR are dependent on the ISC machinery. We also found that Dre2 is required for RNR cofactor formation but appears to be dispensable for iron loading. None of the CIA components downstream of Dre2 was required for RNR cofactor formation. Thus, the pathways for RNR and Fe-S cluster biogenesis bifurcate after the Dre2-Tah18 step. We conclude that RNR cofactor biogenesis requires the ISC machinery to mature the Grx3/4 and Dre2 Fe-S proteins, which then function in iron and electron delivery to RNR, respectively.</AbstractText>
<CopyrightInformation>© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Haoran</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>From the Departments of Chemistry and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stümpfig</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Caiguo</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>the Departments of Dermatology and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>An</LastName>
<ForeName>Xiuxiang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stubbe</LastName>
<ForeName>JoAnne</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>From the Departments of Chemistry and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lill</LastName>
<ForeName>Roland</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany, and lill@staff.uni-marburg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Mingxia</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>the Departments of Dermatology and mingxia.huang@ucdenver.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA125574</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM081393</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C531900">Dre2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005609">Free Radicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516012">Grx4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C545181">Grx3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C552878">Tah18 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.-</RegistryNumber>
<NameOfSubstance UI="D012264">Ribonucleotide Reductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005609" MajorTopicYN="N">Free Radicals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012264" MajorTopicYN="N">Ribonucleotide Reductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">deoxyribonucleotide biosynthesis</Keyword>
<Keyword MajorTopicYN="Y">electron transfer</Keyword>
<Keyword MajorTopicYN="Y">iron metabolism</Keyword>
<Keyword MajorTopicYN="Y">iron-sulfur cluster</Keyword>
<Keyword MajorTopicYN="Y">iron-sulfur protein</Keyword>
<Keyword MajorTopicYN="Y">metallocofactor</Keyword>
<Keyword MajorTopicYN="Y">metalloprotein</Keyword>
<Keyword MajorTopicYN="Y">ribonucleotide reductase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28515324</ArticleId>
<ArticleId IdType="pii">M117.786178</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M117.786178</ArticleId>
<ArticleId IdType="pmc">PMC5500809</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1991;194:398-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1706459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12339-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10535923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):E1695-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2009 Oct;109(10):4536-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19705827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Oct 10;289(41):28104-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25160629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 May;24(5):303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24314740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 May 6;408(2):329-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21513700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1973 Nov 10;248(21):7464-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4355582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(5):753-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1970 Mar;34:123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5440901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 2;286(48):41499-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21931161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Oct;17 (10 ):6105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9315670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Nov 22;44(46):15366-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16285741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Oct 10;45(40):12282-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17014081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2006;75:681-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1528-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Sep;28(18):5569-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2010 Oct;6(10):758-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):50-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22050358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;372:325-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18314737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):823-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2013 Nov 19;46(11):2524-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23730940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Jul;278(14):2525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 May;173(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Jun;24(12):1895-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2011;80:733-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21456967</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
<name sortKey="Stumpfig, Martin" sort="Stumpfig, Martin" uniqKey="Stumpfig M" first="Martin" last="Stümpfig">Martin Stümpfig</name>
</noCountry>
<country name="États-Unis">
<region name="Colorado">
<name sortKey="Zhang, Caiguo" sort="Zhang, Caiguo" uniqKey="Zhang C" first="Caiguo" last="Zhang">Caiguo Zhang</name>
</region>
<name sortKey="An, Xiuxiang" sort="An, Xiuxiang" uniqKey="An X" first="Xiuxiang" last="An">Xiuxiang An</name>
<name sortKey="Huang, Mingxia" sort="Huang, Mingxia" uniqKey="Huang M" first="Mingxia" last="Huang">Mingxia Huang</name>
<name sortKey="Huang, Mingxia" sort="Huang, Mingxia" uniqKey="Huang M" first="Mingxia" last="Huang">Mingxia Huang</name>
<name sortKey="Stubbe, Joanne" sort="Stubbe, Joanne" uniqKey="Stubbe J" first="Joanne" last="Stubbe">Joanne Stubbe</name>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000300 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000300 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28515324
   |texte=   The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28515324" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020